On cubic graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total domination in cubic Knodel graphs

A subset D of vertices of a graph G is a dominating set if for each u ∈ V (G) \ D, u is adjacent to somevertex v ∈ D. The domination number, γ(G) ofG, is the minimum cardinality of a dominating set of G. A setD ⊆ V (G) is a total dominating set if for eachu ∈ V (G), u is adjacent to some vertex v ∈ D. Thetotal domination number, γt (G) of G, is theminimum cardinality of a total dominating set o...

متن کامل

On Domination in Cubic Graphs

Let v(G) and γ(G) denote the number of vertices and the domination number of a graph G, respectively, and let ρ(G) = γ(G)/v(G). In 1996 B. Reed conjectured that if G is a cubic graph, then γ(G) ≤ dv(G)/3e. In 2005 A. Kostochka and B. Stodolsky disproved this conjecture for cubic graphs of connectivity one and maintained that the conjecture may still be true for cubic 2-connected graphs. Their m...

متن کامل

On Cubic Nonsymmetric Cayley Graphs

Let be a connected Cayley graph of group G, then Γ is called normal if the right regular representation of G is a normal subgroup of , the full automorphism group of Γ. For the case where G is a finite nonabelian simple group and Γ is symmetric cubic Cayley graph, Caiheng Li and Shangjin Xu proved that Γ is normal with only two exceptions. Since then, the normality of nonsymmetric cubic Cayley ...

متن کامل

Approximate solutions of HAPPYNET on cubic graphs

The HAPPYNET problem is defined as follows : Given a undirected simple graph G with integer weights wvu on its edges vu ∈ E(G), find a function s : V (G) −→ {−1, 1} such that ∀v ∈ V (G), v is happy in G, i.e. such that u∈Γ(v) s(v)s(u)wuv ≥ 0. It is easy to see that HAPPYNET has always a solution, no matter what the input is. However, no polynomial algorithm is known for this problem, which is c...

متن کامل

On incidence coloring for some cubic graphs

In 1993, Brualdi and Massey conjectured that every graph can be incidence colored with ∆+2 colors, where ∆ is the maximum degree of a graph. Although this conjecture was solved in the negative by an example in [1], it might hold for some special classes of graphs. In this paper, we consider graphs with maximum degree ∆ = 3 and show that the conjecture holds for cubic Hamiltonian graphs and some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Časopis pro pěstování matematiky

سال: 1982

ISSN: 0528-2195

DOI: 10.21136/cpm.1982.118123